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We investigate resonant cavitylike modes in dielectric photonic crystals made of collections of subwave-
length cylinders with high permittivity. A large number of collective modes appear for TE polarization �where
magnetic fields are oriented along the cylinder axis�, which possess similar features of resonant cavity modes
that occur in polaritonic structures. These modes are dispersionless in nature and intensively gathered around
an asymptotic frequency that depends on the subwavelength cylinders. The typical resonant cavitylike modes
are illustrated with the magnetic field distributions at the resonant frequencies. In particular, the field pattern in
the building block shows a close resemblance to TEnm mode of an isolated waveguide. The respective cutoff
frequency at large oscillation orders serves as the asymptotic frequency of resonant cavitylike modes.
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I. INTRODUCTION

Metamaterials are artificial structures which possess prop-
erties not available in naturally occurring materials.1,2 The
unusual properties come from the interaction of electromag-
netic waves with the structure rather than directly from the
material composition. To treat in effect the metamaterial as a
homogeneous medium, the microstructures that compose the
medium have to be much smaller than the wavelength. Major
characteristics of a metamaterial are therefore quasistatic in
nature.

A useful way to describe the metamaterial properties is
through the use of effective parameters, such as the effective
permittivity �eff and effective permeability �eff. The two
quantities characterize the response of a medium to the elec-
tric and magnetic fields, respectively. For a metamaterial
made of subwavelength microstructures, the overall effective
properties may differ from any of the constituent materials.
In particular, the effective parameters are valid in the quasi-
static regime, where the frequency is relatively lower, but the
retardation effect is still important. In this regime, the field
distribution tends to be uniform at a large length scale. At a
small length scale comparable with the microstructure size,
the variation in fields may be significant.

Due to the resonance of fields inside the microstructures,
metamaterials may exhibit counterintuitive properties such
as a negative permeability.1 In particular, a strong magnetic
activity may arise in a photonic structure with large dielectric
contrast.3 The effective permeability �eff of the structure was
shown to experience a Lorentz-type anomalous dispersion
and this structure is regarded as a dielectric metamaterial.4

Near a particular resonant frequency, �eff drastically changes
from a very large positive value to a very large negative one.
The magnetic response of the dielectric metamaterial thus
resembles the electric response of a polar material. In this
regard, certain features associated with polaritonic
structures5–9 may occur as well in a photonic structure made
of such dielectric metamaterial.

One of the most distinguished features for polaritonic
structures is the appearance of resonant cavity modes. These

modes come from the strong coupling of photons with
phonons in the polar material and are closely related to in-
teresting properties such as flux expulsion and node
switching.5 As the frequency approaches the transverse-
optical phonon frequency �T, the polar material becomes a
very large-index medium. The electromagnetic fields are
therefore trapped in the medium and the polaritonic structure
behaves like a collection of cavities.

In this study, we investigate resonant cavitylike modes in
a special realization of the photonic crystal, whose building
block consists of a collection of subwavelength cylinders
with high permittivity. In view of the effective permeability,
the underlying photonic structure behaves like a magnetic
analog of polaritonic crystal. The existence of resonant cavi-
tylike modes is manifest on the dispersion characteristics in
two aspects. First, a large number of collective modes appear
and gather around an asymptotic frequency for TE polariza-
tion. The modes possess features similar to those of resonant
cavity modes occurring in polaritonic structures. Second, the
typical resonant modes exhibit a highly localized field distri-
bution within the building block, outside which the field am-
plitudes are nearly zero. This is another distinguished feature
of resonant cavity modes. In particular, the magnetic fields in
the building block show a pattern analogous to that of TEnm
mode of an isolated waveguide. The respective cutoff fre-
quency at large oscillation orders serves as the role of
asymptotic frequency for resonant cavitylike modes.

II. BASIC EQUATIONS

A. Effective permeability model

Consider a periodic array of square cylinders with width s
and dielectric constant �1, embedded in a background mate-
rial with dielectric constant �. The array period h is assumed
to be much smaller than the wavelength � in such a way that
the dielectric structure can be regarded as a homogeneous
medium. Let �1 be substantially larger than �. A strong mag-
netic activity arises due to the presence of Mie resonance
associated with the dielectric cylinders.3 Near a resonance,
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the polarization currents are circulating around each dielec-
tric cylinder �about its axis� and tend to approach their maxi-
mum values. As a result, the magnetic fields are highly lo-
calized in the dielectric region. The effective permeability
�eff of the dielectric structure becomes frequency dependent
and exhibits an anomalous dispersion around the resonant
frequency.

According to the theory of mesoscopic magnetism,4,10,11

the effective permeability �eff is described by an explicit
expression as

�eff��� = 1 − f �
n,m=1,3,5,. . .

�nm�2

�2 − �nm
2 , �1�

where f =s2 /h2 is the filling fraction of cylinders. This for-
mula manifests itself as a sum of Lorentz-type oscillators;
each oscillator is characterized by a resonant frequency �nm
and a weighting coefficient �nm with respect to the oscilla-
tion orders n and m. In particular, �nm is identified as the
waveguide mode frequency, which can be realized by the
fact that the magnetic fields are largely confined in the high-
dielectric region and the cylinder behaves like a waveguide
or cavity resonator. The coefficient �nm is a measure of the
oscillator strength and determined by the eigenfield associ-
ated with the resonant frequency �nm as12

�nm =
��nm,1�2

��nm,�nm��1,1�
, �2�

where �nm and �nm are the nmth solution pair of the eigen-
system

− �2� = �1��

c
�2

� , �3�

defined at the interior of high-dielectric region � with �
=0 on its boundary, and the inner product �f ,g��	�f�gd� is
an integral taken over the region �. For simple geometries
such as square or circular cylinders, both �nm and �nm can be
analytically obtained.13 In the present problem, the cylinder
is of square shape and the solutions are given as

�nm =
	c
n2 + m2

s
�1

, �4�

�nm = cos�n	x

s
�cos�m	y

s
� , �5�

�nm =
64

n2m2	4 . �6�

Note that �nm and �nm correspond to the resonant frequency
and mode pattern, respectively, of TEnm mode for a square
waveguide.14

Near the lowest-order resonance �n=m=1�, Eq. �1� is ap-
proximated as

�eff��� = 1 −
f�11�

2

�2 − �11
2 , �7�

where �11=64 /	4�0.657 and �11=	c
2 /s
�1. This perme-
ability model is also applicable to the magnetic response of
split-ring resonators,12 where the resonance factor �11�1. In
analogy with the dielectric model of polar materials, Eq. �7�
can be rewritten as

�eff��� = �
��2 − �mL
2

�2 − �mT
2 � , �8�

where �
=1− f�11 is the permeability at high frequency,
�mT=�11 and �mL=�mT /
�
 are regarded as the magnetic
analogs of transverse- and longitudinal-optical-phonon fre-
quencies, respectively.15

B. Photonic crystal of subwavelength cylinders

Now consider a photonic crystal made of the aforemen-
tioned subwavelength cylinders. The building block is a
square column of width d, consisting of a collection of di-
electric cylinders at the subwavelength scale. The schematics
of the photonic crystal and the building block in the unit cell
are shown in Fig. 1. In this configuration, the subwavelength
cylinders are responsible for the existence of resonant cavi-
tylike modes in a nonpolaritonic structure. Basic features of
resonant cavitylike modes are either manifest or implied in
the dispersion characteristics. For propagation of waves par-
allel to the lattice plane, the time-harmonic magnetic mode
�with time dependence e−i�t� is described by

− � · �1

�
� H� = ��

c
�2

H . �9�

It is sufficient to solve the underlying problem �periodic
structure of infinite extent� in one unit cell along with the
Bloch condition

H�r + ai� = eik·aiH�r� �10�

applying at the unit-cell boundary, where k is the Bloch
wave vector and ai�i=1,2� is the lattice translation vector.

In the present problem, the unit cell of the photonic crys-
tal contains a collection of subwavelength cylinders. Com-
pared to usual photonic structures, where only one or few

h
s

d

a

a

(a) (b)

FIG. 1. �Color online� Schematics of �a� the photonic crystal
made of collections of subwavelength cylinders and �b� the building
block in the unit cell.
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elements are present in each unit cell, the building block of
the underlying structure presents itself a more delicate �or
complex� geometry with substructures �the cylinders� much
smaller than the unit cell size. Accordingly, the eigenfields
may exhibit variations at the corresponding �smaller� length
scale and a higher precision scheme is required to resolve the
underlying problem.

For a photonic crystal with complex geometry, the disper-
sion relations can be efficiently solved by the inverse itera-
tion method.16–18 In this approach, the eigensystem, Eq. �9�,
is solved by making good use of the Hermitian property of
the differential operator. The important step is the calculation
of the Rayleigh quotient

RQ =
�x,Ax�
�x,x�

, �11�

where A is the matrix constructed by discretization of the
differential operator, x is the vector consisting of all discrete
values of H �over the unit cell�, and the inner product �· , ·� is
taken over the unit cell. An initial guess of x, usually pre-
scribed as a random distribution, is used to give a first value
of RQ, which in turn is utilized to refine the vector x through
solving a matrix inversion

�A − �I�xn = xo, �12�

where xo and xn are referred to as old and new values of x,
respectively, and � is a parameter. This procedure is repeated
until the Rayleigh quotient RQ converges within a certain
accuracy; the quotient RQ and the vector x are then given as
the solution pair of the eigenvalue and eigenfunction. More
details of this approach can be found in Refs. 16 and 17.

III. RESULTS AND DISCUSSION

A. Collective frequency branches

Figure 2 shows the dispersion diagram for a photonic
crystal made of collections of subwavelength cylinders,
where �1=200+5i, �=1, d /a=0.8, h /a=0.05, and s /h=0.8.
A large number of frequency branches appear for TE polar-
ization. As the frequency gets closer to a /��1.24, more

branches are observed. These collective modes have similar
features to those of resonant cavity modes that occur in po-
laritonic structures.6,8,9 They are dispersionless in nature; that
is, their frequencies are insensitive to the change of wave
vector. As a result, the corresponding frequency branches
tend to be flattened. In a polaritonic structure, the dispersion-
less nature comes from the strong coupling of photons with
phonons in the polar material.8 As the underlying photonic
crystal is made of a dielectric material, there is no such cou-
pling behavior.

In the present problem, the dispersionless nature comes
from the interaction of waves with the subwavelength struc-
ture. As indicated by Eq. �8�, the effective permeability �eff
reaches very large values when the frequency approaches
�mT=	c
2 /s
�1=1.25�2	c /a� from below. In this situation,
the subwavelength cylinders serve as a device for trapping
electromagnetic fields and the building block acts like a
high-index cavity. In a polaritonic structure, the asymptotic
frequency of resonant cavity modes �that is, �T� is a property
of the underlying material. For the photonic structure under
study, the asymptotic frequency of resonant cavitylike modes
depends on the subwavelength cylinders. Figure 3 shows the
variations in the asymptotic frequency with respect to the
cylinder width and block width. It is shown in Fig. 3�a� that
the asymptotic frequency decreases as the cylinder width in-
creases. In particular, this frequency is inversely proportional
to the cylinder width and very close to �mT �denoted by the
dashed line�. On the other hand, the asymptotic frequency
remains unchanged as the block width alters, as shown in
Fig. 3�b�.

B. Localized field patterns

The features of resonant cavitylike modes are further il-
lustrated with the resonant field patterns. Figure 4 shows the
magnetic field contours of four typical resonant modes at
a /��0.561, 0.964, 1.201, and 1.24 for the same photonic
crystal in Fig. 2. Note that the fields are strongly localized in
the collection of subwavelength cylinders, outside which the
fields are nearly zero. In particular, the field patterns in the
building block depict the resonant modes for a square wave-
guide as14

Hz�x,y� = sin� p	x

d
�sin�q	y

d
� . �13�

The patterns in Figs. 4�a�–4�d� correspond to p ,q=2, 4, 8,
and 16, respectively. As the orders �p ,q� increase, the respec-
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FIG. 2. �Color online� Dispersion diagram for the photonic crys-
tal made of collections of subwavelength cylinders, where �1

=200+5i, �=1, d /a=0.8, h /a=0.05, and s /h=0.8.
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FIG. 3. �Color online� Variations in the asymptotic frequency for
resonant cavitylike modes with respect to �a� cylinder width s,
where h /a=0.05 and d /a=0.8, �b� block width d, where h /a
=0.05 and s /h=0.8. The dashed line denotes the frequency �mT.
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tive resonant frequency approaches an asymptotic value.
This feature can be characterized by the dispersion relation
of square waveguides filled with the effective medium as6

� =
	c
p2 + q2

d
�eff�eff���
, �14�

where the effective permittivity �eff is determined by using
an approximate polarizability model for square cylinders19 in
the effective medium model as �see the Appendix for detail�

�eff � �
�1 + 1.29f��1 + 1.29�1 − f��

�1 − f��1 + �1.29 + f��
, �15�

and �eff��� is given by Eq. �8�. The eigenfrequency �̂pq as-
sociated with the orders �p ,q� in Eq. �14� can be solved to
give8

�̂pq
2 =

2�pq
2 �mT

2

�mL
2 + �pq

2 + 
��mL
2 + �pq

2 �2 − 4�pq
2 �mT

2
, �16�

where �pq=	c
p2+q2 /d
�eff�
. It is shown in Eq. �16� that
�̂pq→�mT as p ,q→
. For the present configuration,
f =0.64, �eff�4.95, �
�0.58, and �mL�1.64�2	c /a�. It
follows that �̂pq�0.722, 1.074, 1.208, and 1.24�2	c /a� for
p ,q=2, 4, 8, and 16, respectively. The basic trend agrees
with the resonant frequencies of the four typical resonant
cavitylike modes �cf. Fig. 4�. For larger �p ,q�, �̂pq gives a
better correspondence with the resonant modes.

In addition to the resonant cavitylike modes in Fig. 4, a
number of modes with a very different characteristic appear
in the magnetic polariton gap: �mT����mL, where �eff
�0. Figure 5 shows two typical resonant modes at a /�
�1.264 and 1.335. In contrast with resonant cavitylike

modes, the fields in Fig. 5 are distributed in the background
material and nearly zero in the interior of the building block.
This is a special feature of defectlike states that occur in a
polaritonic crystal.6 When the frequency is near �mL �where
�eff�0�, the background material becomes a medium of
higher index and behaves like a defect in an otherwise lower-
index material. This is in opposite to the normal air-defect
state, where the air has a lower index.

C. Physical mechanism of resonant cavitylike modes

The appearance of collective modes in the present prob-
lem is closely related to the artificial magnetism that arises in
the high-dielectric subwavelength cylinders. A large dielec-
tric contrast ��1 /�� between the cylinder and surrounding
material is crucial for giving rise to strong magnetism. This
phenomenon is attributed to the existence of large polariza-
tion currents circulating around the dielectric cylinders,
which give rise to a substantial magnetic dipole moment
along the cylinder axis.3 In this situation, the electromagnetic
fields tend to localize within the high-dielectric region. This
feature is particularly true for the magnetic fields; they are
required only to be continuous �rather than both continuous
and smooth as for the electric fields� at the interface between
two different media. Similar phenomena have also been re-
ported in the dielectric metamaterials.20,21

According to the effective medium model, Eq. �7�, for the
dielectric structure, the effective permeability can grow to a
very large value as the resonant condition is approached. The
building block of the structure in Fig. 1 has in effect a very
large index of refraction. In this situation, the electromag-
netic fields are almost trapped inside the cylinders and the
building block behaves like a waveguide or cavity resonator.
As the building blocks are arranged to form a periodic lat-
tice, a large number of collective modes appear and gather
around a particular frequency. The underlying mechanism is
attributed to the coupling of Mie resonance �due to indi-
vidual cylinders� with the Bragg resonance �due to periodic-
ity of the lattice�. As these modes share some common fea-
tures with the resonant cavity modes that appear in
polaritonic crystals,8 they are termed as resonant cavitylike
modes in this study.

The geometry of the photonic structure, including the
shapes of building block and subwavelength cylinder, has a
minor effect on the basic features of resonant cavitylike

(a) (b)

(c) (d)

FIG. 4. �Color online� Magnetic field contours of four typical
resonant cavitylike modes at �a� a /��0.561, �b� a /��0.964, �c�
a /��1.201, and �d� a /��1.24 for the same photonic crystal in
Fig. 2. The red and green colors denote the positive and negative
values, respectively.

(a) (b)

FIG. 5. �Color online� Magnetic field contours of two typical
defectlike modes at �a� a /��1.264 and �b� a /��1.335 for the
same photonic crystal in Fig. 2.
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modes. These collective modes may appear in other geom-
etries as well, as long as the subwavelength cylinders possess
a large dielectric contrast and the collection of cylinders be-
have like an effective medium so that the effective perme-
ability model is applicable. The effect of geometry, however,
is the shift of resonant frequency with respect to the cylinder
size, as has been illustrated in Fig. 3.

IV. CONCLUDING REMARKS

In conclusion, we have investigated resonant cavitylike
modes in dielectric photonic crystals made of collections of
subwavelength cylinders. The underlying photonic structure
behaves like a magnetic analog of polaritonic crystal, where
the subwavelength cylinders serve as a mechanism for trap-
ping electromagnetic fields. Existence of resonant cavitylike
modes is manifest on the collective frequency branches and
localized field patterns. At the resonant frequencies, the
building block acts like an isolated waveguide with regard to
the mode pattern and cutoff frequency. As the properties of
resonant cavitylike modes can be engineered by the sub-
wavelength cylinders, the underlying photonic structures are
eligible to be polaritonic metamaterials.
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APPENDIX

The effective permittivity �eff of the dielectric structure
�Eq. �15� can be determined by requiring that the total po-
larizability of a unit cell of the microstructure, when embed-
ded in an effectively homogeneous medium, be zero. Figure
6 shows a schematic of the unit cell, consisting of a square
dielectric cylinder �with permittivity �1� and the surrounding
material �with permittivity ��, placed in the effective medium
�with the permittivity �eff�. Let �1 and � be the polarizabil-
ities �per unit length� attributed to the dielectric cylinder and
the unit cell, respectively. The condition of the effective me-
dium to be valid is given by �1+�=0. When this condition
holds, the respective unit cell is indistinguishable with re-
spect to the effective medium from the polarization point of
view. The unit cell has therefore the same permittivity as the
effective medium. Similar approaches based on zero scatter-

ing fields of the unit cell have been applied to the effective
parameters for circular cylinders and spheres in an analytical
manner.22–24

For square cylinders, the polarizability has no analytical
form but can be characterized by an approximate model as19

�1 � �0A1
2.18��1 − ��
�1 − 1.29�

, � � �0A
2.18��eff − ��
�eff − 1.29�

,

�A1�

where A1 and A are the areas of the cylinder and the unit cell,
respectively, and therefore f =A1 /A. Using Eq. �A1� in �1
+�=0, �eff is solved to give

�eff � �
�1 + 1.29f��1 + 1.29�1 − f��

�1 − f��1 + �1.29 + f��
. �A2�

It is noted that for circular cylinders the polarizability is
given as19

�1 = 2�0A1
�1 − �

�1 − �
, � = 2�0A

�eff − �

�eff − �
. �A3�

The above relations yield

�eff = �
�1 + f��1 + �1 − f��
�1 − f��1 + �1 + f��

, �A4�

which is the two-dimensional version of the well-known
Maxwell-Garnett mixing rule.25 A comparison between Eqs.
�A2� and �A3� shows that there is a slight discrepancy of �eff
between the square and circular cylinders.
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